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Distributed Consensus

• Part 1: Consensus 
• Part 2: Paxos  
• Part 3: RAFT
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Three-Phase Commit

Two phase commit: problem if coordinator crashes (processes block) 

Three phase commit: variant of 2PC that avoids blocking
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Replication for Fault Tolerance
• Basic idea: use replicas for the server and data 

• Technique 1: split incoming requests among replicas 

• If one replica fails, other replicas take over its load 

• Suitable for crash fault tolerance (each replica produces correct results when it is us). 

• Technique 2: send each request to all replicas 

• Replicas vote on their results and take majority result 

• Suitable for BFT (a replica can produce wrong results) 

• 2PC, 3PC, Paxos are techniques 
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Consensus
• Consensus: get a group of processes to agree on something 

• Consensus vs Byzantine Agreement  

• Achieve reliability in presence of faulty processes 

• requires processes to agree on data value needed for computation 

• Examples: whether to commit a transaction, agree on identity of a leader, atomic broadcasts, distributed locks 

• 4 Properties of a consensus protocol with fail-stop failures 

• Agreement: every correct process agrees on same value 

• Termination: every correct process decides some value 

• Validity: If all propose v, all correct processes decides v 

• Integrity: Every correct process decided at most one value and if it decides v, someone must have 
proposed v.
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2PC, 3PC Problems
• Both have problems in presence of failures 

• Safety is ensured but liveness is not 

• 2PC 

• must wait for all nodes and coordinator to be up 

• all nodes must vote 

• coordinator must be up 

• 3PC  

• handles coordinator failure 

• but network partitions are still an issue 

• Paxos : how to reach consensus in distributed systems that can tolerate non-malicious failures? 

• majority rather than all nodes participate
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Paxos: fault-tolerant agreement
• Paxos lets nodes agree on same value despite: 

• node failures, network failures and delays 

• Use cases: 

• Nodes agree X is primary (or leader) 

• Nodes agree Y is last operation (order operations)  

• General approach 

• One (or more) nodes decides to be leader (aka proposer) 

• Leader proposes a value and solicits acceptance from others 

• Leader announces result or tries again 

• Proposed independently by Lamport and Liskov 

• Widely used in real systems (ZooKeeper, Chubby, Spanner)

6



Compsci 677: Distributed and OS Lec. 19

Paxos Requirements
• Safety (Correctness) 

• All nodes agree on the same value 

• Agreed value X was proposed by some node 

• Liveness (fault-tolerance) 

• If less than N/2 nodes fail, remaining nodes will eventually reach agreement 

• Liveness not guaranteed if steady stream of failures 

• Why is agreement hard? 

• Network partitions 

• Leader crashes during solicitation or after deciding but before announcing results,  

• New leader proposes different value from already decided value,  

• More than one node  becomes leader simultaneously....
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Paxos Setup
• Entities: Proposer (leader), acceptor, learner 

• Leader proposes value, solicits acceptance from acceptors 

• Acceptors are nodes that want to agree; announce chosen value to learners 

• Proposals are ordered by proposal # 

• node can choose any high number to try to get proposal accepted 

• An acceptor can accept multiple proposals 

• If prop with value v chosen, all higher proposals have value v 

• Each node maintains 

• n_a, v_a: highest proposal # and accepted value 

• n_h : highest proposal # seen so far 

• my_n:    my proposal # in current Paxos
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Paxos operation: 3 phase protocol
• Phase 1 (Prepare phase) 

• A node decides to be a leader and propose 

• Leader chooses  my_n  > n_h 

• Leader sends <prepare, my_n> to all nodes 

• Upon receiving <prepare, n> at acceptor 

• If n < n_h 

•  reply <prepare-reject>  /* already seen higher # proposal */ 

• Else 

• n_h = n            /* will not accept prop lower than n */ 

• reply <prepare-ok, n_a, v_a>   /* send back previous prop, value/ 

•                                                   /* can be null, if first */
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Paxos operation
• Phase 2 (accept phase) 

• If leader gets prepare-ok from majority 

• V = non-empty value from highest n_a received 

• If V = null, leader can pick any V 

• Send <accept, my_n, V> to all nodes 

• If leader fails to get majority prepare-ok 

• delay and restart Paxos 

• Upon receiving <accept, n, V> 

• If n < n_h 

• reply with <accept-reject> 

• else 

• n_a=n ; v_a = V; n_h = h;  reply <accept-ok>
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Paxos Operation
• Phase 3 (decide) 

• If leader gets accept-ok from majority 

• Send <decide, v_a> to all learners 

• If leader fails to get accept-ok from a majority 

• Delay and restart Paxos 

• Properties 

• P1: any proposal number is unique 

• P2: any two set of acceptors have at least one node in common 

• P3: value sent in phase 2 is value of highest numbered proposal received in responses in phase 1
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Paxos Example
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Issues
• Network partitions: 

• With one partition, will have majority on one side and can come to agreement (if nobody fails) 

• Timeouts 

• A node has max timeout for each message 

• Upon timeout, declare itself as leader and restart Paxos 

• Two leaders 

• Either one leader is not able to decide (does not receive majority accept-oks since nodes see 
higher proposal from other leader)  OR  

• one leader causes the other to use it value 

• Leader failures: same as two leaders or timeout occurs
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Part 3: Raft Consensus Protocol
• Paxos is hard to understand (single vs multi-paxos) 

• Raft - understandable consensus protocol 

• State Machine Replication (SMR) 

• Implemented as a replicated log 

• Each server stores a log of commands, executes in order 

• Incoming requests —> replicate into logs of servers 

• Each server executed request log in order: stays consistent 

• Raft: first elect a leader  

• Leader sends  requests (log entries) to followers 

• If majority receive entry: safe to apply -> commit 

• If entry committed, all entries preceding it are committed
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Log replication
• Servers maintain log of commands: order to perform ops 

• Replicated log: replicated state machine (SMR) 

• all servers (replicas) execute commands in log order 

15

Single server log Replicated log

Fig courtesy: D. Ongaro
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Consensus Approaches
• Leaderless (symmetric) 

• Client can contact any server  

• Leader-based (asymmetric) 

• One server is leader and other servers follow the leader 

• Clients contact leader 

• RAFT is a leader-based consensus protocol 

• Two aspects: leader changes and normal operation
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RAFT Overview
• Leader election 

• Select one server to serve as a RAFT leader 

• detect leader crash, elect new leader 

• Normal operation 

• Perform log replication 

• Leader receives client commands, append to log 

• Leader then replicates log to followers  

• Detect and overwrite consistencies in log 

• Safety 

• Committed log entires are not impacted by leader crash 

• Almost one leader 
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Terms

• Time is divided into terms 

• Election  

• Normal operation with elected leader 

• New term starts upon leader failure 

• At most one leader per term 

• Some terms may have no leader (failed term) 

• All servers maintain current term value 

• At any time, each server is either: 

• leader: receives all client requests and log replication 

• follower: passively follows leader  

• candidate: participates in leader election
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RAFT Election
• Election timeout: no RPCs received for a while ~100-500ms 

• Increment current term and become candidate 

• Vote for self (!)  

• Send election (RequestVote RPC) message to followers 

• Receive vote from majority: become leader 

• send heartbeat message (AppendEntries RPC) 

• Receive RPC from leader: become follower again 

• Failed election: no majority votes within election timeout 

• Increment term, start new election 
• Safety: at most one server wins; servers vote once per term 
• Liveness: someone eventually wins 

• choose random election timeouts; one server times out/wins
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Normal RAFT Operation
• Leader receives client commands and appends to log 

• Send AppendEntry RPC to all followers 

• Once entry safely committed to log 

• execute command and return result to client 

• Followers catch up in background 

• Notify followers of committees entries in subsequent RPCs 

• Followers apply committed commands to their state m/c 

• Log entry: index, term, command (stored on disk)
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Log consistency
• Consistency check: include index, term of prev entry 

• follower must contain matching entry: reject otherwise 

• Log entries can become inconsistent due to leader failure
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Log Repair
• Leader tracks nextIndex for each follower 

• If AppendEntry check fails, decrement and try again 

• rewind to find match; follower deletes all subsequent entries 
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Fig courtesy: D. Ongaro
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Recovery
• Techniques thus far allow failure handling 

• Recovery: operations that must be performed after a failure to recover to a 
correct state 

• Techniques: 

– Checkpointing: 

• Periodically checkpoint state  

• Upon a crash roll back to a previous checkpoint with a consistent state
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Independent Checkpointing

• Each processes periodically checkpoints independently of other processes 

• Upon a failure, work backwards to locate a consistent cut 

• Problem: if most recent checkpoints form inconsistenct cut, will need to keep rolling back until a 
consistent cut is found 

• Cascading rollbacks can lead to a domino effect.
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Coordinated Checkpointing
• Take a distributed snapshot [discussed in Lec 13] 

• Upon a failure, roll back to the latest snapshot  

– All process restart from the latest snapshot
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Logging
• Logging : a common approach to handle failures 

• Log requests / responses received by system on separate storage device / 
file (stable storage) 

• Used in databases, filesystems, ... 

• Failure of a node 

• Some requests may be lost 

• Replay log to “roll forward” system state
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Message Logging
• Checkpointing is expensive 

– All processes restart from previous consistent cut 

– Taking a snapshot is expensive 

– Infrequent snapshots => all computations after previous snapshot will need to be redone 
[wasteful] 

• Combine checkpointing (expensive) with message logging (cheap) 

– Take infrequent checkpoints 

– Log all messages between checkpoints to local stable storage 

– To recover: simply replay messages from previous checkpoint 

• Avoids recomputations from previous checkpoint
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