
Compsci 677: Distributed and OS Lec. 19

Distributed Consensus

• Part 1: Consensus
• Part 2: Paxos
• Part 3: RAFT

1

Compsci 677: Distributed and OS Lec. 18

Three-Phase Commit

Two phase commit: problem if coordinator crashes (processes block)

Three phase commit: variant of 2PC that avoids blocking

2

Compsci 677: Distributed and OS Lec. 18

Replication for Fault Tolerance
• Basic idea: use replicas for the server and data

• Technique 1: split incoming requests among replicas

• If one replica fails, other replicas take over its load

• Suitable for crash fault tolerance (each replica produces correct results when it is us).

• Technique 2: send each request to all replicas

• Replicas vote on their results and take majority result

• Suitable for BFT (a replica can produce wrong results)

• 2PC, 3PC, Paxos are techniques

3

Compsci 677: Distributed and OS Lec. 19

Consensus
• Consensus: get a group of processes to agree on something

• Consensus vs Byzantine Agreement

• Achieve reliability in presence of faulty processes

• requires processes to agree on data value needed for computation

• Examples: whether to commit a transaction, agree on identity of a leader, atomic broadcasts, distributed locks

• 4 Properties of a consensus protocol with fail-stop failures

• Agreement: every correct process agrees on same value

• Termination: every correct process decides some value

• Validity: If all propose v, all correct processes decides v

• Integrity: Every correct process decided at most one value and if it decides v, someone must have
proposed v.

4

Compsci 677: Distributed and OS Lec. 19

2PC, 3PC Problems
• Both have problems in presence of failures

• Safety is ensured but liveness is not

• 2PC

• must wait for all nodes and coordinator to be up

• all nodes must vote

• coordinator must be up

• 3PC

• handles coordinator failure

• but network partitions are still an issue

• Paxos : how to reach consensus in distributed systems that can tolerate non-malicious failures?

• majority rather than all nodes participate

5

Compsci 677: Distributed and OS Lec. 19

Paxos: fault-tolerant agreement
• Paxos lets nodes agree on same value despite:

• node failures, network failures and delays

• Use cases:

• Nodes agree X is primary (or leader)

• Nodes agree Y is last operation (order operations)

• General approach

• One (or more) nodes decides to be leader (aka proposer)

• Leader proposes a value and solicits acceptance from others

• Leader announces result or tries again

• Proposed independently by Lamport and Liskov

• Widely used in real systems (ZooKeeper, Chubby, Spanner)

6

Compsci 677: Distributed and OS Lec. 19

Paxos Requirements
• Safety (Correctness)

• All nodes agree on the same value

• Agreed value X was proposed by some node

• Liveness (fault-tolerance)

• If less than N/2 nodes fail, remaining nodes will eventually reach agreement

• Liveness not guaranteed if steady stream of failures

• Why is agreement hard?

• Network partitions

• Leader crashes during solicitation or after deciding but before announcing results,

• New leader proposes different value from already decided value,

• More than one node becomes leader simultaneously....

7

Compsci 677: Distributed and OS Lec. 19

Paxos Setup
• Entities: Proposer (leader), acceptor, learner

• Leader proposes value, solicits acceptance from acceptors

• Acceptors are nodes that want to agree; announce chosen value to learners

• Proposals are ordered by proposal #

• node can choose any high number to try to get proposal accepted

• An acceptor can accept multiple proposals

• If prop with value v chosen, all higher proposals have value v

• Each node maintains

• n_a, v_a: highest proposal # and accepted value

• n_h : highest proposal # seen so far

• my_n: my proposal # in current Paxos

8

Compsci 677: Distributed and OS Lec. 19

Paxos operation: 3 phase protocol
• Phase 1 (Prepare phase)

• A node decides to be a leader and propose

• Leader chooses my_n > n_h

• Leader sends <prepare, my_n> to all nodes

• Upon receiving <prepare, n> at acceptor

• If n < n_h

• reply <prepare-reject> /* already seen higher # proposal */

• Else

• n_h = n /* will not accept prop lower than n */

• reply <prepare-ok, n_a, v_a> /* send back previous prop, value/

• /* can be null, if first */

9

Compsci 677: Distributed and OS Lec. 19

Paxos operation
• Phase 2 (accept phase)

• If leader gets prepare-ok from majority

• V = non-empty value from highest n_a received

• If V = null, leader can pick any V

• Send <accept, my_n, V> to all nodes

• If leader fails to get majority prepare-ok

• delay and restart Paxos

• Upon receiving <accept, n, V>

• If n < n_h

• reply with <accept-reject>

• else

• n_a=n ; v_a = V; n_h = h; reply <accept-ok>

10

Compsci 677: Distributed and OS Lec. 19

Paxos Operation
• Phase 3 (decide)

• If leader gets accept-ok from majority

• Send <decide, v_a> to all learners

• If leader fails to get accept-ok from a majority

• Delay and restart Paxos

• Properties

• P1: any proposal number is unique

• P2: any two set of acceptors have at least one node in common

• P3: value sent in phase 2 is value of highest numbered proposal received in responses in phase 1

11

Compsci 677: Distributed and OS Lec. 19

Paxos Example

12

Compsci 677: Distributed and OS Lec. 19

Issues
• Network partitions:

• With one partition, will have majority on one side and can come to agreement (if nobody fails)

• Timeouts

• A node has max timeout for each message

• Upon timeout, declare itself as leader and restart Paxos

• Two leaders

• Either one leader is not able to decide (does not receive majority accept-oks since nodes see
higher proposal from other leader) OR

• one leader causes the other to use it value

• Leader failures: same as two leaders or timeout occurs

13

Compsci 677: Distributed and OS Lec. 19

Part 3: Raft Consensus Protocol
• Paxos is hard to understand (single vs multi-paxos)

• Raft - understandable consensus protocol

• State Machine Replication (SMR)

• Implemented as a replicated log

• Each server stores a log of commands, executes in order

• Incoming requests —> replicate into logs of servers

• Each server executed request log in order: stays consistent

• Raft: first elect a leader

• Leader sends requests (log entries) to followers

• If majority receive entry: safe to apply -> commit

• If entry committed, all entries preceding it are committed

14

Compsci 677: Distributed and OS Lec. 19

Log replication
• Servers maintain log of commands: order to perform ops

• Replicated log: replicated state machine (SMR)

• all servers (replicas) execute commands in log order

15

Single server log Replicated log

Fig courtesy: D. Ongaro

Compsci 677: Distributed and OS Lec. 19

Consensus Approaches
• Leaderless (symmetric)

• Client can contact any server

• Leader-based (asymmetric)

• One server is leader and other servers follow the leader

• Clients contact leader

• RAFT is a leader-based consensus protocol

• Two aspects: leader changes and normal operation

16

Compsci 677: Distributed and OS Lec. 19

RAFT Overview
• Leader election

• Select one server to serve as a RAFT leader

• detect leader crash, elect new leader

• Normal operation

• Perform log replication

• Leader receives client commands, append to log

• Leader then replicates log to followers

• Detect and overwrite consistencies in log

• Safety

• Committed log entires are not impacted by leader crash

• Almost one leader

17

Compsci 677: Distributed and OS Lec. 19

Terms

• Time is divided into terms

• Election

• Normal operation with elected leader

• New term starts upon leader failure

• At most one leader per term

• Some terms may have no leader (failed term)

• All servers maintain current term value

• At any time, each server is either:

• leader: receives all client requests and log replication

• follower: passively follows leader

• candidate: participates in leader election

18

Fig courtesy: D. Ongaro

Compsci 677: Distributed and OS Lec. 19

RAFT Election
• Election timeout: no RPCs received for a while ~100-500ms

• Increment current term and become candidate

• Vote for self (!)

• Send election (RequestVote RPC) message to followers

• Receive vote from majority: become leader

• send heartbeat message (AppendEntries RPC)

• Receive RPC from leader: become follower again

• Failed election: no majority votes within election timeout

• Increment term, start new election
• Safety: at most one server wins; servers vote once per term
• Liveness: someone eventually wins

• choose random election timeouts; one server times out/wins

19

Compsci 677: Distributed and OS Lec. 19

Normal RAFT Operation
• Leader receives client commands and appends to log

• Send AppendEntry RPC to all followers

• Once entry safely committed to log

• execute command and return result to client

• Followers catch up in background

• Notify followers of committees entries in subsequent RPCs

• Followers apply committed commands to their state m/c

• Log entry: index, term, command (stored on disk)

20

term

command

index ->

Fig courtesy: D. Ongaro

Compsci 677: Distributed and OS Lec. 19

Log consistency
• Consistency check: include index, term of prev entry

• follower must contain matching entry: reject otherwise

• Log entries can become inconsistent due to leader failure

21

Fig courtesy: D. Ongaro

Fig courtesy: D. Ongaro

Compsci 677: Distributed and OS Lec. 19

Log Repair
• Leader tracks nextIndex for each follower

• If AppendEntry check fails, decrement and try again

• rewind to find match; follower deletes all subsequent entries

22

nextIndex

Fig courtesy: D. Ongaro

Compsci 677: Distributed and OS Lec. 19

Recovery
• Techniques thus far allow failure handling

• Recovery: operations that must be performed after a failure to recover to a
correct state

• Techniques:

– Checkpointing:

• Periodically checkpoint state

• Upon a crash roll back to a previous checkpoint with a consistent state

23

Compsci 677: Distributed and OS Lec. 19

Independent Checkpointing

• Each processes periodically checkpoints independently of other processes

• Upon a failure, work backwards to locate a consistent cut

• Problem: if most recent checkpoints form inconsistenct cut, will need to keep rolling back until a
consistent cut is found

• Cascading rollbacks can lead to a domino effect.

24

Compsci 677: Distributed and OS Lec. 19

Coordinated Checkpointing
• Take a distributed snapshot [discussed in Lec 13]

• Upon a failure, roll back to the latest snapshot

– All process restart from the latest snapshot

25

Compsci 677: Distributed and OS Lec. 19

Logging
• Logging : a common approach to handle failures

• Log requests / responses received by system on separate storage device /
file (stable storage)

• Used in databases, filesystems, ...

• Failure of a node

• Some requests may be lost

• Replay log to “roll forward” system state

26

Compsci 677: Distributed and OS Lec. 19

Message Logging
• Checkpointing is expensive

– All processes restart from previous consistent cut

– Taking a snapshot is expensive

– Infrequent snapshots => all computations after previous snapshot will need to be redone
[wasteful]

• Combine checkpointing (expensive) with message logging (cheap)

– Take infrequent checkpoints

– Log all messages between checkpoints to local stable storage

– To recover: simply replay messages from previous checkpoint

• Avoids recomputations from previous checkpoint

27

